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Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory
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We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple
gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the
constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulas
at each order by using results from previous orders. In this way, we are able to derive a new set of fluid
dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases.
We obtain a stress tensor that contains a dynamical pressurédebulk viscosity that is process dependent
and our heat current depends on the gradients of both temperature and density. On account of these features,
the equations apply to a greater range of Knudsen nuiftberratio of mean free path to macroscopic scale
than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen
number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.
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[. INTRODUCTION equation in Knudsen number. Higher order approximations,
such as the Burnett or super-Burnett developmgng [and
The derivation of fluid equations from kinetic theory is that of Woods[7]] have hardly improved matters and the
often effected by an expansion of the solution of the kineticresulting equations do not work well when the Knudsen
equation in the Knudsen number, the ratio of the mean freeaumber is not infinitesimal3]. Moreover, the continuum
path to the characteristic macroscopic scale. The methoequations found in these higher approximations are very
generally in use was developed by Chapman and Engklog complicated so that they do not seem to repay the effort
whose aim in part was to remedy deficiencies in the earliemvolved in their use.
work of Hilbert[2,3]. Chapman and Enskog derived the Eu- Some hope for improvement of the situation was raised
ler equations at zeroth order and the Navier-StokdS)  when Grad 8] introduced his moment method, whose lead-
equations at first order, starting from the Boltzmann equatioring order results are the Navier-Stokes equations. However,
of kinetic theory. But the Navier-Stokd®lS) equations do the further development of Grad’s methf@,10] does not
not adequately describe the dynamics of fluids when the@roduce very rapid convergence nor does it easily give very
Knudsen number is not very small. The inadequacies of thaccurate solutions of the problems mentioned Hae we
NS equations in dealing with the problems of rarefied mediashall see in Paper)llLevermore[11] has proposed an alter-
are well documenteft] and we shall cite empirical evidence nate moment method that avoids the failures of causality that
for this when we compare our theory with experiment insometimes arise with the Grad’s method. The newer method
Paper 11[28] of this series. Problems arise, for example, inhas produced interesting results on shock strudtL2g but
the study of shock waves since the thickness of a shock wavas yet has not given results with heat flux.
is generally of the order of the mean free path of the particles Other approaches that are being explored are the resum-
that make up the medium through which the shock propamation of the terms of the Chapman-Enskog expangi@r
gates. However, the difficulty has little if anything to do with 15] and the flux-limited diffusion theorj16]; both of these
the nonlinearity of the shock waves, as we may see from thapproaches have proved useful in radiative transfer theory
similar failure of the NS equations to predict accurately the(the former in Refs[17,18 and the latter in Ref[19]). A
propagation of linear sound waves when their periods ar@romising and interesting approach is by way of thermody-
comparable to the mean flight times of the constituent parnamic (or phenomenologicalmodels[9,10] that give good
ticles (paper ). agreement with experimef@]. The relativistic extensions of
To improve matters, one may try solving the kinetic equa-these latter procedur¢20] produce hyperbolic systems and
tions directly[4], but this leads to a problem in higher di- do not violate causality.
mensions than is encountered in solving the continuum fluid Here we propose a modification of the asymptotic proce-
equations. Alternatively, one may seek to derive from thedure of Chapman and Enskog. We begin, as they do, with an
kinetic theory a set of fluid equations with a greater domainexpansion in mean free paths of the constituent particles, as
of validity than the NS equations. This was the aim of at-did Hilbert. However, we do not simplify the results at a
tempts to go to higher order in the development of the kinetigiven order by introducing expressiofmmainly for time de-
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rivatives of fluid quantities from previous orders as did
Chapman and Enskog. As we shall see, this seemingly small P(X-t)=f mfav, 2.3
difference in the methods makes for large differences in the

results when they are applied to cases with finite mean fregnere the integration is over all of velocity space. We may
paths. As mentioned in Ref21] and more fully documented 5150 introduce the particle number density p/m. A second

in Paper II, even our first-order asymptotics provides accepmportant macroscopic quantity is the mean, or drift, veloc-
able accuracy when comparison is made with experimentgly defined as

results.

In this paper, we derive continuum equations from the 1
relaxation model of kinetic theorf22—24. In the relaxation u(x,t)= —j mvfdv. (2.4
model, the approach toward equilibrium takes place in a re- p
laxation timer, which is determined by the mean flight time . : .
of the constituent particles of the medium. So the analog OWe may the_:n introduce the peculiar velocity-v—u and
Hilbert's approach is here an expansion in relaxation time. se itto define the temperature as
our version of this development, we shall not recycle the
lower orders through the current order as is done in T=——
Chapman-Enskog theory. The fluid equations following from 3Rp
our procedure, generalize the Navier-Stokes equations, ) )
which we shall recover from ours by a simple developmentvhereR=k/m is the gas constant aridis the Boltzmann
for the stress tensor and the heat flux in terms-oéffec- ~ constant. We assume throughout this work ftgdes rapidly
tively the Knudsen number. In that sense, a byproduct of oufO Z€ro agv|—, so thatf-weighted integrals over velocity
development is a relatively simple derivation of the Navier-SPace are finite and well defined.

Stokes equations, one that avoids some of the complications The macroscopic quantities are all functionsxoéndt,
of the Chapman-Enskog method. and, when we speak of a temperature, we use the notion of

local thermodynamic equilibrium, in which equilibrium for-
mulas are used to describe nonequilibrium conditions locally
in space and time. In the relaxation version of the kinetic
Consider a gas made up of identical particles of nrass €quation, the interaction term on the right of &2.1), rep-
obeying classical Hamiltonian dynamics. The phase space é¢gsenting collisions amongst the particles, drives the system
a single particle is six dimensional and its coordinates aréoward the equilibrium given by,, which we take to be the
spatial positionx, and velocityv. The expected number of local Maxwell-Boltzmann distribution in the frame locally
particles in a phase volunuxdv is f(x,v,t)dxdv, wherefis ~ comoving with the matter, namely
the density in phase spa¢er one-particle distribution func-

c’fdv, (2.5

1. SOME KINETIC THEORY

tion). For a Hamiltonian system the phase flow is incom- _ _ap c?
pressible in the sense that its six-dimensional velocity is so- fo=n(2mRT) "% exp( a ﬁ) 2.6
lenoidal, and the relaxation model of kinetic theory
[22,25,24 that we adopt here is This distribution depends on position and time only through
its dependence on the local macroscopic quantitiesy,
Df — fo—f 2.2) andT and it is, moreover, a local equilibrium solution of the
T’ ) Boltzmann equation.
To make the description work well, we try to arrange that
with the following notation. The streaming operator is the fields on whichf, depends are most nearly those of the
real flow. This “osculating” property of the assumed equi-
D=d,+v'd+aa, (2.2 librium may be imposed by matching conditions that are

inherited from the theory of the Boltzmann equation. There

where i=1,2,3, repeated indices are summed,  the quantities that are conserved in two body collisions are
=alox', a,i=dldv', a' represents the acceleration of a par-the sums of the masses, the velocities, and the energies of the
ticle caused by an external force, ands the time scale on two colliding particles. We letyy, with «=0,1,...,4 be
which the system relaxes to the equilibriudig these summational invariants, thatfig=m, ¢;=mv;, and

While we prefer to think of Eq(2.1) as a model, it may ¢4= Imv? with i=1,2,3. In Boltzmann theory, this conser-
be also considered as an approximation to the Boltzmanwmation property results in the orthogonality of tile, with
equation where- andf, are taken as approximations to func- the collision term in the kinetic theory. This property is gen-
tionals off that appear in the Boltzmann collision operator. erally ascribed to kinetic models, including the relaxation
With either interpretation, the relaxation timeis of the  model. Therefore when we multiply the right-hand side of
order of a collision time. Though might, in principle, de- equation by any of the/, and integrate over velocity space,
pend onv, we here assume that it depends on just the localve get zero. This gives us the matching conditions
values of the macroscopic fields. To give an expression for
we then need to specify the macroscopic quantities. _

The mass density of the fluid is defined as J Yafodv= J Yatdv, 27
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provided that we assume thatdoes not depend on the ve- *
locity. This condition ensures that the true fluid fields are the f= Z fm7™ (3.6
ones appearing in E¢2.6). m=0

Finally, we may specify that should be of the order of , ) )
the mean flight time of the constituent particles, that is, the Y/hen we substitute E¢3.6) into Eq. (2.1) we obtain a
mean free path of particles divided by the mean speed. If th&€7i€S Of equations for thé, . The first of these is the
collision cross section of the particles is independent of ve@nticipated conditiorf )= fo. The second approximation is
locity, then simple collision theory gives the result that SIMPY
«1/p\/T, so that, generally speaking,is a function of the

macroscopic variables. f(y=—"Dfo. 3.7

When we introduce expressid@.6) into this result we ob-
1I. EQUAT|ONS OF FLUID DYNAMICS tain the more exp|icit relation

When we multiply Eq(2.1) by 7, and integrate ovev,

2
t_he right-hand side is zero .because of the matching condi- fay=—Ffo| DInp+ c —§)Dln T+ ic.pc )
tion. If we add the assumption thatdoes not depend ow 2RT 2 RT
we obtain these macroscopic equations: (3.9
ap+V-(pu)=0, (3.1) Matters are quite simple up to this point but when we go

to higher orders, we encounter terms arising from the deriva-
tives of 7. So we stop the expansion at this point since we
already have enough in first order to obtain an interesting
s generalization of the equations of fluid mechanics.
2pR(6T+u-VT)+P:Vu+V.Q=0, 3.3 To use the asymptotic results fbin Egs.(3.4) and(3.5),
we note that the higher moments can be written as
where the colon stands for a double dot product and we have

p(du+u-Vu)+ V- -P=pa, (3.2

introduced the pressure tengor second momeint P=P+ Pa)+ - - (3.9

P= J mccfdv (3.9 and

Q=Qu*+7Qu)* -, (3.10
and the heat flux vectga third momentgiven by
where
Q J ! c’cfd (3.5 1
= | zmc“cfdv. .
2 P(n): f mCCf(n)dV and Q(n): f EmCZCf(n)dV

In deriving these equations, we have performed integrations (31D

by parts under the integrations over velocity space. Thes
give no boundary terms if, as we assunfiggoes rapidly
enough to zero al| gets large[Strictly speaking, thd in .
Eq. (3.3 should be the transpose, but as the stress tensor is p(o):f mC4fode eed(), (3.12
symmetric in this work, we need not indicate this. 0

These macroscopic equations are a formal consequence of
the kinetic equatior(2.1). For them to be useful, we must Wherec=|c| ande=c/c.
supply adequate expressions PandQ. The Navier-Stokes With a little rearranging, the first of the two integrals in
forms of these higher moments, which were first derivedEd. (3.12 becomes proportional to a gamma function. The
phenomenologically, were obtained for small mean freesecond integral can be written as
paths by the Chapman-Enskog method from the Boltzmann
equation. The NS equations have also been extracted from f
Eq. (2.1) by this method23]. Those developments follow on
the work of Hilbert, who introduced a series expansion in
mean free path fofinto the Boltzmann equatiof2,23,3. In  wherel is the unit tensor; its components are those of the
the case of the relaxation model, matters are simpler becauggonecker delta. Hence, we find that
it has an essentially linear form and this permits a clearer
statement of the underlying approach to deriving the fluid Poy=p1, (3.19
equations. The procedure is to developgrjron the presump-
tion that it is small compared to the macroscopic times thatvhere
arise. Such an asymptotic development for the case of the
relaxation model begins with an expansion of the form p=RpT, (3.15

Then we readily see that

41
eedQ=?I, (3.13
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which we identify with the gas pressure. By contrast, thements are given only implicitly by Eq$3.22) and(3.23 and
integral for the heat flux is odd io and we find thaQ,y  we need to solve the fluid equations together with those
=0. In short, the macroscopic equations at leading order arequations to obtain explicit expressions for the higher mo-
the Euler equations. ments.

To evaluateP;y, we note that

IV. DISCUSSION OF THE EQUATIONS

D
D= —+c-V+a-g,, (3.16

Dt A. The entrance of entropy

Since the equations foP and Q are intertwined with
the field equations themselves, we first rewrite these equa-
tions so as to clarify their meaning. We may introduce
=4+u-V (3.17  the continuity equation into E¢3.22 and so replac& -u

by — p/p, where the dot stands f@/Dt. The combination

and we us&v andd, interchangeably. Then we have of T/T and ofb/p that then appears suggests the introduction
of the quantity

where
Dt

2

cc D
A+c B+ ——=—=—InT—(ccVInT)/(RT)

fy=—To 2RT Dt

3
S=RIn—. 4.1
2

c
+——=c-VInT|,

2RT (318

For an ideal gas, this is the formula for the specific entropy,
with C,=3R/2 andy=5/3. If we introduceS together with
the definition ofp, we may rewrite Eq(3.21) as

D
A=—In 3/2, B= V|nT/2+

a— —)/(RT)
(3.19

With the c-related factors thus in evidence, it is a straight- ~ Similarly, the momentum equatiof8.2) can be used to
forward matter to carry out the necessary integrals to evalurewrite the formula for the heat flux. Since E&.23 con-
ateP(;y andQ(,). For this, we need the formula tainsDu/Dt, we may use Eq(3.2) to rewrite it as

1—

é—s I—uE+O(72). 4.2

P=p

f e'elee’ d0= %( §18% +6%517 + 57 8%,
(3.20

which may be verified by explicit evaluation of its compo- wherev=u/p.

nents. If we includePy, we may write the result of the ~ We may also use Ed4.1) to convert Eq.(3.3) into an

integration as evolution equation for the specific entropy. If we introduce
Eq. (4.2) into that equation, we find a terp¥V - u so thatp/p

I— uE+0O(72), (3.2 comes in by way of the continuity equation. The term in Eq.

(3.3 involving T/T combines with this and we obtain an
equation forS. But S also appears i and hence, when we

gather the two apparitions &ftogether, we see that E(.3)

ood oaul 2 becomes
E”ZW‘FW——V uél. (3.22
j i

+0(7%), (4.3

B VT 5 v PS
Q_ n EV : Cu

B DInT 2V
“|P#Tpr T3V

whereu= 7p, and

For the heat current, we get Dt

2 DS
pT(l— 7V- u) —=—-uE:Vu-V-Q. (4.9
+0(7), Though our equations may have an unfamiliar look, this is
not because we have done anything unusual. Rather, we have
(3.23 omitted doing some things that are normally considered
usual. So let us see how to get back to more familiar ground.

=—yVT—9TVI > 2
Q=—nVT=9TVinp—zu|zr—2a

where =3 uR.
A more detailed derivation is given in R¢26]. The ex-
pressions folP and Q involve not only the fluid dynamical B. The Euler and Navier-Stokes equations
fields, or lower moments df but their substantial derivatives  \\/e have obtained
as well. Those derivatives are given by the fluid dynamical
equations that, in turn, involvE and Q. So the higher mo- w=7p and 7p=37pR (4.5
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and so we see that when-0, we haveP=p I+ O(7) and TrP=3p. (4.12

Q=0(r7), with S=O(7) according to Eq.(4.4). Thus we _ o
obtain the Euler equations in |eading order together W|thTh|S result SayS that the total pressure has no contribution of
entropy conservation. a dynamical kind for a structureless gas, as Maxwell and

We see also that the tern&/C.. in both Eq.(4.2) and Eq. Boltzmann both recognized. The Chapman-Enskog proce-
(4.3 is of orders2. Therefore vx;)e find that dure imposes this condition at every finite order so that

CE_
P=pl-uE+0O(7) (4.6) TrPg==3p. (4.12
and When we impose Eq4.12 onto Eq.(4.10, we are forcing
the requirement that Ry=0, which overly constrains the
Q=-yVT+0(7), (4.7 results obtained by Chapman and Enskog and destroys any

i ) hope of improving convergence by mitigating their errors.
when 7 is very small. Therefore when the extra terms in ourygowever. all that we should demand of our successive ap-
pressure tensor and heat flux are developet] ine see that proximations is that in thélth approximation
our forms differ from the standard Navier-Stokes terms in

terms of orderr?, which is perfectly allowable in first-order TrPy=3p+0O(N*"Y), (4.13
theories.

In contrast to the conventional closure approximationsOn introducing this less restrictive condition into £d.10
our expressions foP andQ depend on both the fluid fields we find that, in our procedure,
and their derivatives. This means that these expressions must
be solved in concert with the dynamical equations. To ex- TrRy=0(7""1), (4.149
pressP andQ explicitly in terms of the fluid fields, as in the i i ) i
usual closure relations, we would need to make expansion&hich does not incur the loss of generality thatl\1“(3rlcmg the
in 7. As we have just seen, in the first order, we recover thd'@c€ OfRy to vanish does. By keeping ter@(7™" %) in
Euler equations and in the second order we get the NavieRU" Nth approximation foiP andQ, we leave open the pos-
Stokes equations. Continuation of this development produce¥Pility of compensating for the errors caused by the trunca-
terms of all orders in-. Therein lies the crucial difference of ton of the series forf by retaining suitable process-
our results from those of the Chapman-Enskog procedure§€pendent effects of higher order. o ,
The extra terms in our development of the present results do 11NUS We have in our present approximation a dynamical
not correspond to the higher theories based on ChapmaRI€SSure in our approximate pressure tense{="P )
Enskog procedures that lead to the Burnett equations, as 7P thatis,
shall be explained in another place. All the terms in the
present approximation come about from a first-order theory
and the differences from standard theory arise in terms of
second and higher order. Wheris not infinitesimal, which
it never is in practice, these terms do have an effect on th®ur asymptotics suggests that the extra term compensates for

S
1__

TrP;=3p c

=3p+0(72). (4.15

predictions of the theory. the effect of truncation of the series fbrSince this term has
contributions from all orders i, it can in principle be very
C. Dynamical pressure effective in extending the domain of validity of the theory.

To clarify the meaning of the difference between our

equations for a simple gas and those obtained with the V. CONCLUSION

Chapman-Enskog procedure we note that, as in&8), we We have illustrated our derivation of the fluid equations

are writing the solution of the kinetic equation at any orderfrom kinetic equations by carrying out the procedure for the

as relaxation model of kinetic theory. The same procedure can
N be used on other forms of the kinetic equation. In the case of

_ N+1 . _ m the Boltzmann equation, the procedure is quite similar,
f=fn+O(7)  with fN_mZ‘o fmr" (48 though the invers?on of the Iineparized Boltzmgnn collision
operator involves some technical issues that we shall take up
From this we then obtain an approximation for the stresslsewhere. However, by working out the case of the relax-
tensor in the form ation model we can more readily see the differences between
our approach and the Chapman-Enskog procedure.
P=Pny+Rw, (4.9 In our derivation, we do not introduce slow times as in the
Chapman-Enskog method. This means that we are not driven
to expand the fluid variable®@r slow quantitiesin 7 as in
Chapman-Enskog theory. Such expansions cause ambiguity
TrP=TrPy+TrRy. (4.10 in the application of initial conditions since it is not clear
how to distribute the initial values over the various orders.
As we see from the definitiof8.4) of P, in the exact case, Moreover, those expansions lead to a different sequence of

whereRy=0(7"1) is the error incurred in the truncation
of the series. If we take the trace of Ed.9), we find
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approximations than ours. Chapman-Enskog theory gives thall orders inT and this means that we may hope that they will
pressure tensor and the heat flux explicitly in terms of theproduce high accuracy even wheris not infinitesimal. In
fluid fields, a feature that results from invoking solvability any event, it is clear that we may expect a divergence be-
conditions at each order. Our results do not produce explicifyeen results from our system and those from the Navier-
formulas forl” andQ in terms of the fluid fields; rather, these Stokes equations whenis not very small.

guantities are expressed in terms of the fluid fieldd their ) .
derivatives. Those derivatives appear in the field equations Keller [27] has remarked that two theories with the same

themselves so that we do produce a closed system of equa0minal accuracy may have different domains of validity. In
tions. Moreover, since the expansion variabl@ppears in ~ forcing the trace of’y to be exactly p, order by order, the
the equations, we may further expand the equations to déchapman-Enskog method renounces the extra generality al-
velop explicit formulas forP and Q accurate to any pre- lowed by the freedom to choose higher order terms in an
scribed order. advantageous way. For us, the problem has been to select the
As we saw, the leading terms in the development of thebest way to allow for the higher order corrections when try-
formula for I’ and Q give us successively the Euler and ing to extend the domain of validity of the theory. We shall
Navier-Stokes equations, but the development need not stagse as our test of validity the comparison with experiment
there. That is, our finite formulas implicitly contain terms of given in the following paper of this series.
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