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Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory
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We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple
gas. As in the works of Hilbert, of Chapman, and of Enskog, we expand in the mean flight time of the
constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulas
at each order by using results from previous orders. In this way, we are able to derive a new set of fluid
dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases.
We obtain a stress tensor that contains a dynamical pressure term~or bulk viscosity! that is process dependent
and our heat current depends on the gradients of both temperature and density. On account of these features,
the equations apply to a greater range of Knudsen number~the ratio of mean free path to macroscopic scale!
than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen
number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.

DOI: 10.1103/PhysRevE.64.046308 PACS number~s!: 05.20.Dd, 47.45.2n, 51.10.1y, 51.20.1d
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I. INTRODUCTION

The derivation of fluid equations from kinetic theory
often effected by an expansion of the solution of the kine
equation in the Knudsen number, the ratio of the mean
path to the characteristic macroscopic scale. The met
generally in use was developed by Chapman and Enskog@1#
whose aim in part was to remedy deficiencies in the ear
work of Hilbert @2,3#. Chapman and Enskog derived the E
ler equations at zeroth order and the Navier-Stokes~NS!
equations at first order, starting from the Boltzmann equa
of kinetic theory. But the Navier-Stokes~NS! equations do
not adequately describe the dynamics of fluids when
Knudsen number is not very small. The inadequacies of
NS equations in dealing with the problems of rarefied me
are well documented@4# and we shall cite empirical evidenc
for this when we compare our theory with experiment
Paper II@28# of this series. Problems arise, for example,
the study of shock waves since the thickness of a shock w
is generally of the order of the mean free path of the partic
that make up the medium through which the shock pro
gates. However, the difficulty has little if anything to do wi
the nonlinearity of the shock waves, as we may see from
similar failure of the NS equations to predict accurately
propagation of linear sound waves when their periods
comparable to the mean flight times of the constituent p
ticles ~paper II!.

To improve matters, one may try solving the kinetic equ
tions directly @4#, but this leads to a problem in higher d
mensions than is encountered in solving the continuum fl
equations. Alternatively, one may seek to derive from
kinetic theory a set of fluid equations with a greater dom
of validity than the NS equations. This was the aim of
tempts to go to higher order in the development of the kine
1063-651X/2001/64~4!/046308~6!/$20.00 64 0463
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equation in Knudsen number. Higher order approximatio
such as the Burnett or super-Burnett developments@5,6# @and
that of Woods@7## have hardly improved matters and th
resulting equations do not work well when the Knuds
number is not infinitesimal@3#. Moreover, the continuum
equations found in these higher approximations are v
complicated so that they do not seem to repay the ef
involved in their use.

Some hope for improvement of the situation was rais
when Grad@8# introduced his moment method, whose lea
ing order results are the Navier-Stokes equations. Howe
the further development of Grad’s method@9,10# does not
produce very rapid convergence nor does it easily give v
accurate solutions of the problems mentioned here~as we
shall see in Paper II!. Levermore@11# has proposed an alter
nate moment method that avoids the failures of causality
sometimes arise with the Grad’s method. The newer met
has produced interesting results on shock structure@12# but
as yet has not given results with heat flux.

Other approaches that are being explored are the res
mation of the terms of the Chapman-Enskog expansion@13–
15# and the flux-limited diffusion theory@16#; both of these
approaches have proved useful in radiative transfer the
~the former in Refs.@17,18# and the latter in Ref.@19#!. A
promising and interesting approach is by way of thermo
namic ~or phenomenological! models@9,10# that give good
agreement with experiment@9#. The relativistic extensions o
these latter procedures@20# produce hyperbolic systems an
do not violate causality.

Here we propose a modification of the asymptotic pro
dure of Chapman and Enskog. We begin, as they do, with
expansion in mean free paths of the constituent particles
did Hilbert. However, we do not simplify the results at
given order by introducing expressions~mainly for time de-
©2001 The American Physical Society08-1
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rivatives of fluid quantities! from previous orders as did
Chapman and Enskog. As we shall see, this seemingly s
difference in the methods makes for large differences in
results when they are applied to cases with finite mean
paths. As mentioned in Ref.@21# and more fully documented
in Paper II, even our first-order asymptotics provides acce
able accuracy when comparison is made with experime
results.

In this paper, we derive continuum equations from t
relaxation model of kinetic theory@22–24#. In the relaxation
model, the approach toward equilibrium takes place in a
laxation timet, which is determined by the mean flight tim
of the constituent particles of the medium. So the analog
Hilbert’s approach is here an expansion in relaxation time
our version of this development, we shall not recycle
lower orders through the current order as is done
Chapman-Enskog theory. The fluid equations following fro
our procedure, generalize the Navier-Stokes equati
which we shall recover from ours by a simple developm
for the stress tensor and the heat flux in terms oft, effec-
tively the Knudsen number. In that sense, a byproduct of
development is a relatively simple derivation of the Navi
Stokes equations, one that avoids some of the complicat
of the Chapman-Enskog method.

II. SOME KINETIC THEORY

Consider a gas made up of identical particles of masm
obeying classical Hamiltonian dynamics. The phase spac
a single particle is six dimensional and its coordinates
spatial positionx, and velocityv. The expected number o
particles in a phase volumedxdv is f (x,v,t)dxdv, wheref is
the density in phase space~or one-particle distribution func
tion!. For a Hamiltonian system the phase flow is inco
pressible in the sense that its six-dimensional velocity is
lenoidal, and the relaxation model of kinetic theo
@22,25,24# that we adopt here is

Df 5
f 02 f

t
, ~2.1!

with the following notation. The streaming operator is

D5] t1v i]xi1ai]v i ~2.2!

where i 51,2,3, repeated indices are summed,]xi

5]/]xi , ]v i5]/]v i , ai represents the acceleration of a pa
ticle caused by an external force, andt is the time scale on
which the system relaxes to the equilibriumf 0.

While we prefer to think of Eq.~2.1! as a model, it may
be also considered as an approximation to the Boltzm
equation wheret and f 0 are taken as approximations to fun
tionals of f that appear in the Boltzmann collision operato
With either interpretation, the relaxation timet is of the
order of a collision time. Thought might, in principle, de-
pend onv, we here assume that it depends on just the lo
values of the macroscopic fields. To give an expression fot
we then need to specify the macroscopic quantities.

The mass density of the fluid is defined as
04630
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r~x,t !5E m f dv, ~2.3!

where the integration is over all of velocity space. We m
also introduce the particle number densityn5r/m. A second
important macroscopic quantity is the mean, or drift, velo
ity, defined as

u~x,t !5
1

rE mvf dv. ~2.4!

We may then introduce the peculiar velocityc5v2u and
use it to define the temperature as

T5
1

3RrE c2f dv, ~2.5!

whereR5k/m is the gas constant andk is the Boltzmann
constant. We assume throughout this work thatf goes rapidly
to zero asuvu→`, so thatf-weighted integrals over velocity
space are finite and well defined.

The macroscopic quantities are all functions ofx and t,
and, when we speak of a temperature, we use the notio
local thermodynamic equilibrium, in which equilibrium for
mulas are used to describe nonequilibrium conditions loc
in space and time. In the relaxation version of the kine
equation, the interaction term on the right of Eq.~2.1!, rep-
resenting collisions amongst the particles, drives the sys
toward the equilibrium given byf 0, which we take to be the
local Maxwell-Boltzmann distribution in the frame locall
comoving with the matter, namely

f 05n~2pRT!23/2expS 2
c2

2RTD . ~2.6!

This distribution depends on position and time only throu
its dependence on the local macroscopic quantities,n, u,
andT and it is, moreover, a local equilibrium solution of th
Boltzmann equation.

To make the description work well, we try to arrange th
the fields on whichf 0 depends are most nearly those of t
real flow. This ‘‘osculating’’ property of the assumed equ
librium may be imposed by matching conditions that a
inherited from the theory of the Boltzmann equation. The
the quantities that are conserved in two body collisions
the sums of the masses, the velocities, and the energies o
two colliding particles. We letca with a50,1, . . . ,4 be
these summational invariants, that isc05m, c i5mv i , and
c45 1

2 mv2 with i 51,2,3. In Boltzmann theory, this conse
vation property results in the orthogonality of theca with
the collision term in the kinetic theory. This property is ge
erally ascribed to kinetic models, including the relaxati
model. Therefore when we multiply the right-hand side
equation by any of theca and integrate over velocity space
we get zero. This gives us the matching conditions

E ca f 0dv5E ca f dv, ~2.7!
8-2
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provided that we assume thatt does not depend on the ve
locity. This condition ensures that the true fluid fields are
ones appearing in Eq.~2.6!.

Finally, we may specify thatt should be of the order o
the mean flight time of the constituent particles, that is,
mean free path of particles divided by the mean speed. If
collision cross section of the particles is independent of
locity, then simple collision theory gives the result thatt
}1/rAT, so that, generally speaking,t is a function of the
macroscopic variables.

III. EQUATIONS OF FLUID DYNAMICS

When we multiply Eq.~2.1! by tca and integrate overv,
the right-hand side is zero because of the matching co
tion. If we add the assumption thatt does not depend onv
we obtain these macroscopic equations:

] tr1“•~ru!50, ~3.1!

r~] tu1u•“u!1“•P5ra, ~3.2!

3
2 rR~] tT1u•“T!1P:“u1“•Q50, ~3.3!

where the colon stands for a double dot product and we h
introduced the pressure tensor~or second moment!

P5E mccf dv ~3.4!

and the heat flux vector~a third moment! given by

Q5E 1

2
mc2cf dv. ~3.5!

In deriving these equations, we have performed integrati
by parts under the integrations over velocity space. Th
give no boundary terms if, as we assume,f goes rapidly
enough to zero asucu gets large.@Strictly speaking, theP in
Eq. ~3.3! should be the transpose, but as the stress tens
symmetric in this work, we need not indicate this.#

These macroscopic equations are a formal consequen
the kinetic equation~2.1!. For them to be useful, we mus
supply adequate expressions forP andQ. The Navier-Stokes
forms of these higher moments, which were first deriv
phenomenologically, were obtained for small mean f
paths by the Chapman-Enskog method from the Boltzm
equation. The NS equations have also been extracted
Eq. ~2.1! by this method@23#. Those developments follow o
the work of Hilbert, who introduced a series expansion
mean free path forf into the Boltzmann equation@2,23,3#. In
the case of the relaxation model, matters are simpler bec
it has an essentially linear form and this permits a clea
statement of the underlying approach to deriving the fl
equations. The procedure is to develop int, on the presump-
tion that it is small compared to the macroscopic times t
arise. Such an asymptotic development for the case of
relaxation model begins with an expansion of the form
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f (m)t
m. ~3.6!

When we substitute Eq.~3.6! into Eq. ~2.1! we obtain a
series of equations for thef (m) . The first of these is the
anticipated conditionf (0)5 f 0. The second approximation i
simply

f (1)52Df 0 . ~3.7!

When we introduce expression~2.6! into this result we ob-
tain the more explicit relation

f (1)52 f 0FD ln r1S c2

2RT
2

3

2DD ln T1
1

RT
c•DcG .

~3.8!

Matters are quite simple up to this point but when we
to higher orders, we encounter terms arising from the der
tives of t. So we stop the expansion at this point since
already have enough in first order to obtain an interest
generalization of the equations of fluid mechanics.

To use the asymptotic results forf in Eqs.~3.4! and~3.5!,
we note that the higher moments can be written as

P5P(0)1tP(1)1••• ~3.9!

and

Q5Q(0)1t Q(1)1•••, ~3.10!

where

P(n)5E mccf (n)dv and Q(n)5E 1

2
mc2cf (n)dv.

~3.11!

Then we readily see that

P(0)5E
0

`

mc4f 0dcE e edV, ~3.12!

wherec5ucu ande5c/c.
With a little rearranging, the first of the two integrals

Eq. ~3.12! becomes proportional to a gamma function. T
second integral can be written as

E e edV5
4p

3
I, ~3.13!

where I is the unit tensor; its components are those of
Kronecker delta. Hence, we find that

P(0)5p I, ~3.14!

where

p5RrT, ~3.15!
8-3
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which we identify with the gas pressure. By contrast,
integral for the heat flux is odd inc and we find thatQ(0)
50. In short, the macroscopic equations at leading order
the Euler equations.

To evaluateP(1) , we note that

D5
D

Dt
1c•“1a•]c , ~3.16!

where

D

Dt
5] t1u•“ ~3.17!

and we use“ and]x interchangeably. Then we have

f (1)52 f 0FA1c•B1
c2

2RT

D

Dt
ln T2~cc:“ ln T!/~RT!

1
c2

2RT
c•“ ln TG , ~3.18!

where

A5
D

Dt
ln

r

T3/2
, B5“ ln

r

T3/2
1S a2

Du

Dt D /~RT!.

~3.19!

With thec-related factors thus in evidence, it is a straig
forward matter to carry out the necessary integrals to ev
ateP(1) andQ(1) . For this, we need the formula

E ei ej ek el dV5
4p

15
~d i j dkl 1d ikd j l 1d i l d jk!,

~3.20!

which may be verified by explicit evaluation of its comp
nents. If we includeP(0) , we may write the result of the
integration as

P5Fp2mS D ln T

Dt
1

2

3
“•uD G I2mE1O~t2!, ~3.21!

wherem5tp, and

Ei j 5
]ui

]xj
1

]uj

]xi
2

2

3
“•u d i j . ~3.22!

For the heat current, we get

Q52h“T2hT“ ln p2
5

2
mS Du

Dt
2aD1O~t2!,

~3.23!

whereh5 5
2 mR.

A more detailed derivation is given in Ref.@26#. The ex-
pressions forP andQ involve not only the fluid dynamica
fields, or lower moments off, but their substantial derivative
as well. Those derivatives are given by the fluid dynami
equations that, in turn, involveP andQ. So the higher mo-
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ments are given only implicitly by Eqs.~3.22! and~3.23! and
we need to solve the fluid equations together with tho
equations to obtain explicit expressions for the higher m
ments.

IV. DISCUSSION OF THE EQUATIONS

A. The entrance of entropy

Since the equations forP and Q are intertwined with
the field equations themselves, we first rewrite these eq
tions so as to clarify their meaning. We may introdu
the continuity equation into Eq.~3.22! and so replace“•u
by 2 ṙ/r, where the dot stands forD/Dt. The combination
of Ṫ/T and ofṙ/r that then appears suggests the introduct
of the quantity

S5
3

2
R ln

p

r5/3
. ~4.1!

For an ideal gas, this is the formula for the specific entro
with Cv53R/2 andg55/3. If we introduceS together with
the definition ofp, we may rewrite Eq.~3.21! as

P5pF12
tṠ

Cv
G I2mE1O~t2!. ~4.2!

Similarly, the momentum equation~3.2! can be used to
rewrite the formula for the heat flux. Since Eq.~3.23! con-
tainsDu/Dt, we may use Eq.~3.2! to rewrite it as

Q52h“T2
5

2
n“•S tpṠ

Cv
I1tpED 1O~t2!, ~4.3!

wheren5m/r.
We may also use Eq.~4.1! to convert Eq.~3.3! into an

evolution equation for the specific entropy. If we introdu
Eq. ~4.2! into that equation, we find a termp“•u so thatṙ/r
comes in by way of the continuity equation. The term in E
~3.3! involving Ṫ/T combines with this and we obtain a
equation forṠ. But Ṡ also appears inP and hence, when we
gather the two apparitions ofṠ together, we see that Eq.~3.3!
becomes

rTS 12
2

3
t¹•uD DS

Dt
52mE:“u2“•Q. ~4.4!

Though our equations may have an unfamiliar look, this
not because we have done anything unusual. Rather, we
omitted doing some things that are normally conside
usual. So let us see how to get back to more familiar grou

B. The Euler and Navier-Stokes equations

We have obtained

m5tp and h5 5
2 tpR ~4.5!
8-4
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and so we see that whent→0, we haveP5p I1O(t) and
Q5O(t), with Ṡ5O(t) according to Eq.~4.4!. Thus we
obtain the Euler equations in leading order together w
entropy conservation.

We see also that the termtṠ/Cv in both Eq.~4.2! and Eq.
~4.3! is of ordert2. Therefore, we find that

P5p I2m E1O~t2! ~4.6!

and

Q52h“T1O~t2!, ~4.7!

whent is very small. Therefore when the extra terms in o
pressure tensor and heat flux are developed int, we see that
our forms differ from the standard Navier-Stokes terms
terms of ordert2, which is perfectly allowable in first-orde
theories.

In contrast to the conventional closure approximatio
our expressions forP andQ depend on both the fluid field
and their derivatives. This means that these expressions
be solved in concert with the dynamical equations. To
pressP andQ explicitly in terms of the fluid fields, as in the
usual closure relations, we would need to make expans
in t. As we have just seen, in the first order, we recover
Euler equations and in the second order we get the Nav
Stokes equations. Continuation of this development produ
terms of all orders int. Therein lies the crucial difference o
our results from those of the Chapman-Enskog procedu
The extra terms in our development of the present results
not correspond to the higher theories based on Chapm
Enskog procedures that lead to the Burnett equations
shall be explained in another place. All the terms in t
present approximation come about from a first-order the
and the differences from standard theory arise in terms
second and higher order. Whent is not infinitesimal, which
it never is in practice, these terms do have an effect on
predictions of the theory.

C. Dynamical pressure

To clarify the meaning of the difference between o
equations for a simple gas and those obtained with
Chapman-Enskog procedure we note that, as in Eq.~3.6!, we
are writing the solution of the kinetic equation at any ord
as

f 5 f N1O~tN11! with f N5 (
m50

N

f (m)t
m. ~4.8!

From this we then obtain an approximation for the str
tensor in the form

P5PN1RN , ~4.9!

whereRN5O(tN11) is the error incurred in the truncatio
of the series. If we take the trace of Eq.~4.9!, we find

Tr P5Tr PN1Tr RN . ~4.10!

As we see from the definition~3.4! of P, in the exact case
04630
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Tr P53p. ~4.11!

This result says that the total pressure has no contributio
a dynamical kind for a structureless gas, as Maxwell a
Boltzmann both recognized. The Chapman-Enskog pro
dure imposes this condition at every finite order so that

Tr PN
CE53p. ~4.12!

When we impose Eq.~4.12! onto Eq.~4.10!, we are forcing
the requirement that trRN50, which overly constrains the
results obtained by Chapman and Enskog and destroys
hope of improving convergence by mitigating their erro
However, all that we should demand of our successive
proximations is that in theNth approximation,

Tr PN53p1O~tN11!. ~4.13!

On introducing this less restrictive condition into Eq.~4.10!
we find that, in our procedure,

Tr RN5O~tN11!, ~4.14!

which does not incur the loss of generality that forcing t
trace ofRN to vanish does. By keeping termsO(tN11) in
our Nth approximation forP andQ, we leave open the pos
sibility of compensating for the errors caused by the trun
tion of the series forf by retaining suitable process
dependent effects of higher order.

Thus we have in our present approximation a dynam
pressure in our approximate pressure tensor,P15P(0)
1tP(1) , that is,

Tr P153pF12
tṠ

Cv
G53p1O~t2!. ~4.15!

Our asymptotics suggests that the extra term compensate
the effect of truncation of the series forf. Since this term has
contributions from all orders int, it can in principle be very
effective in extending the domain of validity of the theory

V. CONCLUSION

We have illustrated our derivation of the fluid equatio
from kinetic equations by carrying out the procedure for t
relaxation model of kinetic theory. The same procedure
be used on other forms of the kinetic equation. In the cas
the Boltzmann equation, the procedure is quite simi
though the inversion of the linearized Boltzmann collisi
operator involves some technical issues that we shall tak
elsewhere. However, by working out the case of the rel
ation model we can more readily see the differences betw
our approach and the Chapman-Enskog procedure.

In our derivation, we do not introduce slow times as in t
Chapman-Enskog method. This means that we are not dr
to expand the fluid variables~or slow quantities! in t as in
Chapman-Enskog theory. Such expansions cause ambig
in the application of initial conditions since it is not clea
how to distribute the initial values over the various orde
Moreover, those expansions lead to a different sequenc
8-5
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approximations than ours. Chapman-Enskog theory gives
pressure tensor and the heat flux explicitly in terms of
fluid fields, a feature that results from invoking solvabili
conditions at each order. Our results do not produce exp
formulas forP andQ in terms of the fluid fields; rather, thes
quantities are expressed in terms of the fluid fieldsand their
derivatives. Those derivatives appear in the field equati
themselves so that we do produce a closed system of e
tions. Moreover, since the expansion variablet appears in
the equations, we may further expand the equations to
velop explicit formulas forP and Q accurate to any pre
scribed order.

As we saw, the leading terms in the development of
formula for P and Q give us successively the Euler an
Navier-Stokes equations, but the development need not
there. That is, our finite formulas implicitly contain terms
f

-
l

s

s
d
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all orders int and this means that we may hope that they w
produce high accuracy even whent is not infinitesimal. In
any event, it is clear that we may expect a divergence
tween results from our system and those from the Nav
Stokes equations whent is not very small.

Keller @27# has remarked that two theories with the sam
nominal accuracy may have different domains of validity.
forcing the trace ofPN to be exactly 3p, order by order, the
Chapman-Enskog method renounces the extra generalit
lowed by the freedom to choose higher order terms in
advantageous way. For us, the problem has been to selec
best way to allow for the higher order corrections when t
ing to extend the domain of validity of the theory. We sh
use as our test of validity the comparison with experim
given in the following paper of this series.
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